Ethical and Regulatory Gaps in Using Generative AI for Mental Health Support in Low- and Middle-Income Countries

Authors

DOI:

https://doi.org/10.24016/2026.v12.497

Keywords:

Editorial

Abstract

Editorial

Downloads

Download data is not yet available.

References

Ahluwalia, M., Sehgal, S., Lee, G., Agu, E., & Kpodonu, J. (2025). Disparities in Artificial Intelligence-Based Tools Among Diverse Minority Populations: Biases, Barriers, and Solutions. JACC: Advances, 4(5), 101742. https://doi.org/10.1016/j.jacadv.2025.101742

Ayers, J. W., Poliak, A., Dredze, M., Leas, E. C., Zhu, Z., Kelley, J. B., Faix, D. J., Goodman, A. M., Longhurst, C. A., Hogarth, M., & Smith, D. M. (2023). Comparing Physician and Artificial Intelligence Chatbot Responses to Patient Questions Posted to a Public Social Media Forum. JAMA Internal Medicine, 183(6), 589–596. https://doi.org/10.1001/jamainternmed.2023.1838

Baek, G., Cha, C., & Han, J.-H. (2025). AI Chatbots for Psychological Health for Health Professionals: Scoping Review. JMIR Human Factors, 12, e67682. https://doi.org/10.2196/67682

Bommasani, R., Klyman, K., Longpre, S., Kapoor, S., Maslej, N., Xiong, B., Zhang, D., & Liang, P. (2023). The Foundation Model Transparency Index (arXiv:2310.12941). arXiv. https://doi.org/10.48550/arXiv.2310.12941

Chatterji, A., Cunningham, T., Deming, D. J., Hitzig, Z., Ong, C., Shan, C. Y., & Wadman, K. (2025). How People Use ChatGPT (Working Paper No. 34255). National Bureau of Economic Research. https://doi.org/10.3386/w34255

Cross, J. L., Choma, M. A., & Onofrey, J. A. (2024). Bias in medical AI: Implications for clinical decision-making. PLOS Digital Health, 3(11), e0000651. https://doi.org/10.1371/journal.pdig.0000651

Ethical AI governance group. (2023). Beyond the black box: Shaping a responsible AI landscape. KPMG.

Hussain, S. A., Bresnahan, M., & Zhuang, J. (2025). Can artificial intelligence revolutionize healthcare in the Global South? A scoping review of opportunities and challenges. Digital Health, 11, 20552076251348024. https://doi.org/10.1177/20552076251348024

Li, H., Zhang, R., Lee, Y.-C., Kraut, R. E., & Mohr, D. C. (2023). Systematic review and meta-analysis of AI-based conversational agents for promoting mental health and well-being. NPJ Digital Medicine, 6(1), 236. https://doi.org/10.1038/s41746-023-00979-5

Mandal, A., Chakraborty, T., & Gurevych, I. (2025). Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities (arXiv:2502.00451). arXiv. https://doi.org/10.48550/arXiv.2502.00451

Meskó, B., & Topol, E. J. (2023). The imperative for regulatory oversight of large language models (or generative AI) in healthcare. NPJ Digital Medicine, 6(1), 120. https://doi.org/10.1038/s41746-023-00873-0

Morley, J., Floridi, L., Kinsey, L., & Elhalal, A. (2020). From What to How: An Initial Review of Publicly Available AI Ethics Tools, Methods and Research to Translate Principles into Practices. Science and Engineering Ethics, 26(4), 2141–2168. https://doi.org/10.1007/s11948-019-00165-5

Omiye, J. A., Lester, J. C., Spichak, S., Rotemberg, V., & Daneshjou, R. (2023). Large language models propagate race-based medicine. NPJ Digital Medicine, 6(1), 195. https://doi.org/10.1038/s41746-023-00939-z

Smart, S., & Montori, V. M. (2025, April 23). Peru’s AI Regulatory Boom: Quantity Without Depth? https://www.hks.harvard.edu/centers/carr-ryan/our-work/carr-ryan-commentary/perus-ai-regulatory-boom-quantity-without-depth

Stanford Center for Digital Health. (2025). AI for Health in Low- and Middle-Income Countries. CDH.

Thirunavukarasu, A. J., Ting, D. S. J., Elangovan, K., Gutierrez, L., Tan, T. F., & Ting, D. S. W. (2023). Large language models in medicine. Nature Medicine, 29(8), 1930–1940. https://doi.org/10.1038/s41591-023-02448-8

Vaidyam, A. N., Wisniewski, H., Halamka, J. D., Kashavan, M. S., & Torous, J. B. (2019). Chatbots and Conversational Agents in Mental Health: A Review of the Psychiatric Landscape. Canadian Journal of Psychiatry. Revue Canadienne De Psychiatrie, 64(7), 456–464. https://doi.org/10.1177/0706743719828977

Villarreal-Zegarra, D., Reategui-Rivera, C. M., García-Serna, J., Quispe-Callo, G., Lázaro-Cruz, G., Centeno-Terrazas, G., Galvez-Arevalo, R., Escobar-Agreda, S., Dominguez-Rodriguez, A., & Finkelstein, J. (2024). Self-Administered Interventions Based on Natural Language Processing Models for Reducing Depressive and Anxiety Symptoms: Systematic Review and Meta-Analysis. JMIR Mental Health, 11, e59560. https://doi.org/10.2196/59560

Vollmer, S., Mateen, B. A., Bohner, G., Király, F. J., Ghani, R., Jonsson, P., Cumbers, S., Jonas, A., McAllister, K. S. L., Myles, P., Granger, D., Birse, M., Branson, R., Moons, K. G. M., Collins, G. S., Ioannidis, J. P. A., Holmes, C., & Hemingway, H. (2020). Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness. BMJ (Clinical Research Ed.), 368, l6927. https://doi.org/10.1136/bmj.l6927

Wang, Y.-F., Li, M.-D., Wang, S.-H., Fang, Y., Sun, J., Lu, L., & Yan, W. (2025). Large language models in clinical psychiatry: Applications and optimization strategies. World Journal of Psychiatry, 15(11), 108199. https://doi.org/10.5498/wjp.v15.i11.108199

Weidinger, L., Uesato, J., Rauh, M., Griffin, C., Huang, P.-S., Mellor, J., Glaese, A., Cheng, M., Balle, B., Kasirzadeh, A., Biles, C., Brown, S., Kenton, Z., Hawkins, W., Stepleton, T., Birhane, A., Hendricks, L. A., Rimell, L., Isaac, W., … Gabriel, I. (2022). Taxonomy of Risks posed by Language Models.

Downloads

Published

2026-01-02

How to Cite

Rojas-Mezarina, L., & Villarreal-Zegarra, D. (2026). Ethical and Regulatory Gaps in Using Generative AI for Mental Health Support in Low- and Middle-Income Countries. Interacciones, 12, e497. https://doi.org/10.24016/2026.v12.497

Issue

Section

Editorial